首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   12篇
  国内免费   1篇
测绘学   8篇
大气科学   20篇
地球物理   79篇
地质学   92篇
海洋学   9篇
天文学   98篇
自然地理   14篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   8篇
  2016年   12篇
  2015年   17篇
  2014年   7篇
  2013年   18篇
  2012年   11篇
  2011年   17篇
  2010年   16篇
  2009年   25篇
  2008年   12篇
  2007年   15篇
  2006年   15篇
  2005年   16篇
  2004年   13篇
  2003年   12篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   13篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
  1971年   2篇
  1969年   1篇
  1960年   1篇
排序方式: 共有320条查询结果,搜索用时 705 毫秒
81.
The feedforward backpropagation technique provides a model-free estimation with neural networks. The algorithm was used to estimate fracture aperture of natural fractures in three dimensional space. A three-layer neural network with at least 5 nodes in a hidden layer was trained on a data set consisting of formation imaging microscanner logs (FMS)from horizontal boreholes. Sensitivity studies were performed to account for the rate of learning convergence, convergence to local error minima, etc. Among the factors contributing mostly to the overall good or bad performance of the network, the following are worth mentioning: number of data points, data spacing, and data variability. It is shown that a smoothing operation applied to aperture data along the wellbore often helps to reduce disorientation of the network and to switch from oscillations or chaotic jumps to convergence.  相似文献   
82.
This paper describes a low earth orbiter micro-satellite attitude determination algorithm using GPS phase and pseudorange data as the only observables. It is designed to run in real-time, at a rate of 10 Hz, on-board the spacecraft, using minimal chip and memory resources. The spacecraft design includes four GPS antennas deployed on boom arms to improve the antenna separations. The boom arms feature smart sensors, from which time-varying deformation data are used to calculate changes in the body-fixed system (BFS) co-ordinates of the attitude antennas. These data are used as input to the attitude algorithm to improve the accuracy of the output. The conventional double-difference phase observation equations have been re-arranged so that the only unknown parameters in the functions (once the ambiguities have been determined) are the spacecraft Euler angles. This greatly increases the redundancy in the mathematical model, and is exploited to enhance the algorithm's ability to trap observations contaminated by unmodelled multipath. This approach has been shown to be successful in identifying phase outliers at the 5–10 mm level. Speed of execution of the program is improved by utilising numerical differentiation of the model equations in the linearisation process. Furthermore, as the number of solve-for parameters is reduced to three by the chosen mathematical model, matrix inversion requirements are minimised. A novel approach to ambiguity resolution and determination of initial estimates of the attitude parameters has been developed utilising a heuristic technique and the known, and time varying, BFS co-ordinates of the antenna array. Algorithm testing is based on a simulation of the micro-satellite trajectory combined with variations in attitude derived from spin-stabilisation and periodic roll and pitch parameters. The trajectory of the spacecraft centre of mass was calculated by numerical integration of a force model using Earth gravity field parameters, third body effects due to the Sun and the Moon, dynamic Earth tide effects (solar and lunar), and a solar radiation pressure model. Frame transformations between J2000 and ITRF97 used the IERS conventions. A similar approach was used to calculate the trajectories of all available GPS satellites during the same period, using initial conditions of position and velocity from IGS precise orbits. RMS differences between the published precise orbit and the integrated satellite positions were at the 5-mm level. Phase observables are derived from these trajectories, biased by simulation of receiver and satellite clock errors, cycle slips, random or systematic noise and initial integer ambiguities. In the actual simulation of the attitude determination process in orbit, GPS satellite positions are calculated using broadcast ephemerides. The results show that the aim of 0.05° (two sigma) attitude precision can be met provided that the phase noise can be reduced to the level of 1–2 mm. Attitude precision was found to vary strongly with constellation geometry, which can change quite rapidly depending on the variations in spacecraft attitude. The redundancy in the mathematical model was found to be very effective in trapping and isolating cycle slips to the double difference observations that are contaminated. This allows for the possibility of correcting for cycle slips without full recourse to the ambiguity resolution algorithm. Electronic Publication  相似文献   
83.
84.
85.
The Galileo integrity chain depends on a number of key factors, one of which is contamination of the signal-in-space errors with residual errors other than imperfect modelling of satellite orbits and clocks. A potential consequence of this is that the user protection limit is driven not by the errors associated with the imperfect orbit and clock modelling, but by the distortions induced by noise and bias in the integrity chain. These distortions increase the minimum bias the integrity chain can guarantee to detect, which is reflected in the user protection limit. A contributor to this distortion is the inaccuracy associated with the estimation of the offset between the Galileo sensor station (GSS) receiver clocks and the Galileo system time (GST). This offset is termed the receiver clock synchronization error (CSE). This paper describes the research carried out to determine both the CSE and its associated error using GPS data as captured with the Galileo System Test Bed Version 1 (GSTB-V1). In the study we simulate open access to a time datum using IGS data. Two methods are compared for determining CSE and the corresponding uncertainty (noise) across a global network of tracking stations. The single-epoch single-station method is an ‘averaging’ technique that uses a single epoch of data, and is carried out at individual sensor stations, without recourse to the data from other stations. The global network solution method is also single epoch based, but uses the inversion of a linearised model of the global system to solve for the CSE simultaneously at all GSS along with a number of other parameters that would otherwise be absorbed into the CSE estimate in the averaging technique. To test the effectiveness of various configurations in the two methods the estimated synchronisation errors across the GSS network (comprising 25 stations) are compared to the same values as estimated by the International GPS Service (IGS) using a global tracking network of around 150 stations, as well as precise orbit and satellite clock models determined by a combination of global analysis centres. The results show that the averaging technique is vulnerable to unmodelled errors in the satellite clock offsets from system time, leading to receiver CSE errors in the region of 12 ns (3.7 m), this value being largely driven by the satellite CSE errors. The global network approach is capable of delivering CSE errors at the level of 1.5 ns (46 cm) depending on the number of parameters in the linearised model. The International GNSS Service (IGS) receiver clock estimates were used as a truth model for comparative assessment.  相似文献   
86.
The hydro-meteorological characteristics of the flood from August 2002, which affected a great part of the Czech territory, particularly the Vltava and Labe river basin, were compared with corresponding conditions during similar flood events in the summer seasons of 1997, 1890, 1897 and 1903. The comparison shows analogies in synoptic conditions and causal precipitation heights. The heaviest precipitation fell in the area of a considerable horizontal pressure gradient on the rearward side of the cyclone which advanced very slowly to the north-east across Central Europe and created conditions for the transport of moist air as well as for an organized long-term updraft enhanced in orographically exposed regions. The varying features of the individual events were based on the spatial–temporal distribution of causal precipitation and also on the very different saturation of the catchments. It was chiefly the extraordinary time concentration of precipitation together with the highest catchment saturation that made the flood in 2002 the most extreme.The extremeness of meteorological fields during two episodes in July 1997 was compared with two episodes in August 2002 with the aid of the reanalysis data from ECMWF. The first episode in 1997 and the second episode in 2002 were the most similar and more extreme in terms of the large-scale fields of basic meteorological quantities. The similar features of these episodes are specifically an intensive influx of moisture into Central Europe and intensive upward motions in the precipitation area. The extremeness of upper- and low-level potential vorticity fields was evaluated to diagnose the behavior of the cyclone and frontal precipitation bands accompanying it. The suitable spatial configuration of positive upper- and low-level potential vorticity anomalies induced an additional amplification of upward motions in the precipitation area that apparently contributed to triggering the heavy precipitation over Central Europe. On the whole, quantities reached more extreme values during the second episode in 2002.  相似文献   
87.
In this paper, we propose a new parametrization for Om(z) diagnostics and show how the most recent and significantly improved observations concerning the H(z) and SN Ia measurements can be used to probe the consistency or tension between the ΛCDM model and observations. Our results demonstrate that H0 plays a very important role in the consistency test of ΛCDM with H(z)data. Adopting the Hubble constant priors from Planck 2013 and Riess, one finds considerable tension between the current H(z) data and ΛCDM model and confirms the conclusions obtained previously by others. However, with the Hubble constant prior taken from WMAP9, the discrepancy between H(z) data and ΛCDM disappears, i.e., the current H(z) observations still support the cosmological constant scenario. This conclusion is also supported by the results derived from the Joint Lightcurve Analysis(JLA) SN Ia sample. The best-fit Hubble constant from the combination of H(z)+JLA(H00 = 68.81+1.5-1.49 km s-1 Mpc-1) is very consistent with results derived both by Planck 2013 and WMAP9, but is significantly different from the recent local measurement by Riess.  相似文献   
88.
89.
Rockfall is an important process in the final sculpturing of escarpments and scree slopes that originate in bedrock landslides in the Flysch Carpathians. The spatio‐temporal characteristics of rockfall activity were studied at four localities representative of old landslides in the highest part of the Czech Flysch Carpathians (Moravskoslezské Beskydy Mountains). Historical activity, chronology, and spatial context of rockfall activity were reconstructed using dendrogeomorphic techniques and rockfall rate index (RR). A total of 1132 increment cores from 283 trees growing in the rockfall transport and accumulation zones enabled the dating of 989 rockfall events. Reconstruction of a 78‐year‐long RR chronology suggests similar rockfall histories and trends at all study sites, indicating the existence of major common factors driving rockfall dynamics in the region. Temporal analysis and correlation of the RR series obtained with monthly mean temperatures, numbers of days with temperature transitions through 0 °C and monthly precipitation totals show that meteorological characteristics have evident but variable influence on rockfall activity. The most important factor is the effect of freeze–thaw cycles throughout the year, supplemented by low temperatures, especially during autumn. The influence of precipitation totals is of lesser importance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
90.
This paper assesses three key energy sustainability objectives: energy security improvement, climate change mitigation, and the reduction of air pollution and its human health impacts. We explain how the common practice of narrowly focusing on singular issues ignores potentially enormous synergies, highlighting the need for a paradigm shift toward more holistic policy approaches. Our analysis of a large ensemble of alternate energy-climate futures, developed using MESSAGE, an integrated assessment model, shows that stringent climate change policy offers a strategic entry point along the path to energy sustainability in several dimensions. Concerted decarbonization efforts can lead to improved air quality, thereby reducing energy-related health impacts worldwide: upwards of 2–32 million fewer disability-adjusted life years in 2030, depending on the aggressiveness of the air pollution policies foreseen in the baseline. At the same time, low-carbon technologies and energy-efficiency improvements can help to further the energy security goals of individual countries and regions by promoting a more dependable, resilient, and diversified energy portfolio. The cost savings of these climate policy synergies are potentially enormous: $100–600 billion annually by 2030 in reduced pollution control and energy security expenditures (0.1–0.7 % of GDP). Novel aspects of this paper include an explicit quantification of the health-related co-benefits of present and future air pollution control policies; an analysis of how future constraints on regional trade could influence energy security; a detailed assessment of energy expenditures showing where financing needs to flow in order to achieve the multiple energy sustainability objectives; and a quantification of the relationships between different fulfillment levels for energy security and air pollution goals and the probability of reaching the 2 °C climate target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号